Gate-Free Electrical Breakdown of Metallic Pathways in Single-Walled Carbon Nanotube Crossbar Networks.
نویسندگان
چکیده
Aligned single-walled carbon nanotubes (SWNTs) synthesized by the chemical vapor deposition (CVD) method have exceptional potential for next-generation nanoelectronics. However, the coexistence of semiconducting (s-) and metallic (m-) SWNTs remains a considerable challenge since the latter causes significant degradation in device performance. Here we demonstrate a facile and effective approach to selectively break all m-SWNTs by stacking two layers of horizontally aligned SWNTs to form crossbars and applying a voltage to the crossed SWNT arrays. The introduction of SWNT junctions amplifies the disparity in resistance between s- and m-pathways, leading to a complete deactivation of m-SWNTs while minimizing the degradation of the semiconducting counterparts. Unlike previous approaches that required an electrostatic gate to achieve selectivity in electrical breakdown, this junction process is gate-free and opens the way for straightforward integration of thin-film s-SWNT devices. Comparison to electrical breakdown in junction-less SWNT devices without gating shows that this junction-based breakdown method yields more than twice the average on-state current retention in the resultant s-SWNT arrays. Systematic studies show that the on/off ratio can reach as high as 1.4 × 10(6) with a correspondingly high retention of on-state current compared to the initial current value before breakdown. Overall, this method provides important insight into transport at SWNT junctions and a simple route for obtaining pure s-SWNT thin film devices for broad applications.
منابع مشابه
Electrical and Sensing Properties of Single-Walled Carbon Nanotubes Network: Effect of Alignment and Selective Breakdown
The electrical transport and NH3 sensing properties of randomly oriented and aligned SWNT networks were presented and discussed. The results indicate that aligned SWNT-FETs have better FET characteristics due to the reduced number of interconnected nodes. This was particularly true as the resistance of the devices increased. Gated electrical breakdown was implemented to selectively remove metal...
متن کاملRemoval of Metallic Single-Walled Carbon Nanotubes Using Molecular Glass Thin Films
1. INTRODUCTION Single-walled carbon nanotubes (SWNTs) are a promising material for next generation field-effect transistors (FETs) [1]. It is one of the most important requirements to obtain purely semiconducting SWNT arrays. Recently, Jin et al. [2] have reported a method to selectively remove metallic SWNTs over the whole length by using thermocapillary flows of organic thin films. Here, we ...
متن کاملField emission and anode etching during formation of length-controlled nanogaps in electrical breakdown of horizontally aligned single-walled carbon nanotubes.
We observe field emission between nanogaps and voltage-driven gap extension of single-walled carbon nanotubes (SWNTs) on substrates during the electrical breakdown process. Experimental results show that the gap size is dependent on the applied voltage and humidity, which indicates high controllability of the gap size by appropriate adjustment of these parameters in accordance with the applicat...
متن کاملSelective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown.
An organic film-assisted electrical breakdown technique is proposed to selectively remove metallic (m-) single-walled carbon nanotubes (SWNTs) in full length towards creation of pure semiconducting SWNT arrays which are available for the large-scale fabrication of field effect transistors (FETs). The electrical breakdown of horizontally aligned SWNT arrays embedded in organic films resulted in ...
متن کاملDirect observation of Born-Oppenheimer approximation breakdown in carbon nanotubes.
Raman spectra and electrical conductance of individual, pristine, suspended, metallic single-walled carbon nanotubes are measured under applied gate potentials. The G(-) band is observed to downshift with small applied gate voltages, with the minima occurring at E(F) = +/-(1)/(2)E(phonon), contrary to adiabatic predictions. A subsequent upshift in the Raman frequency at higher gate voltages res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2015